Back to partitions

Exercise 1-106(2)

Given a function \(\{1 \mapsto 12, 2 \mapsto 12, 3 \mapsto 3, 4 \mapsto 4\}\) from the four element set \(S\) to the three element set \(T\)

  1. Choose a nontrivial partition \(c \in Prt(S)\) and compute \(g_!(c) \in Prt(T)\)

  2. Choose any coarser partition \(g_!(c)\leq d \in Prt(T)\)

  3. Choose any non-coarser partition \(g_!(c) > e \in Prt(T)\)

  4. Find \(g^*(d)\) and \(g^*(e)\)

  5. Show that the adjunction formula is true, i.e. that \(c \leq g^*(d)\) (because \(g_!(c) \leq d\)) and \(g^*(e) > c\) (because \(e > g_!(c)\))

Solution(1)
  1. \(c = \{(1, 3),(2,), (4,)\}\), \(g_!(c)\) is then \(\{(12,3),(4,)\}\)

  2. \(d = \{(12,),(3,),(4,)\}\)

  3. \(e = \{(12,3,4)\}\)

  4. \(g^*(d)=\{(1,2),(3,),(4,)\}, g^*(e)=\{(1,2,3,4)\}\)

  5. \(c \leq g^*(d)\) and \(g^*(e) > c\)